The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development.
نویسندگان
چکیده
Dlx homeobox genes are mammalian homologs of the Drosophila Distal-less (Dll) gene. The Dlx/Dll gene family is of ancient origin and appears to play a role in appendage development in essentially all species in which it has been identified. In Drosophila, Dll is expressed in the distal portion of the developing appendages and is critical for the development of distal structures. In addition, human Dlx5 and Dlx6 homeobox genes have been identified as possible candidate genes for the autosomal dominant form of the split-hand/split-foot malformation (SHFM), a heterogeneous limb disorder characterized by missing central digits and claw-like distal extremities. Targeted inactivation of Dlx5 and Dlx6 genes in mice results in severe craniofacial, axial, and appendicular skeletal abnormalities, leading to perinatal lethality. For the first time, Dlx/Dll gene products are shown to be critical regulators of mammalian limb development, as combined loss-of-function mutations phenocopy SHFM. Furthermore, spatiotemporal-specific transgenic overexpression of Dlx5, in the apical ectodermal ridge of Dlx5/6 null mice can fully rescue Dlx/Dll function in limb outgrowth.
منابع مشابه
Dlx5 Is a Cell Autonomous Regulator of Chondrocyte Hypertrophy in Mice and Functionally Substitutes for Dlx6 during Endochondral Ossification
The axial and appendicular skeleton of vertebrates develops by endochondral ossification, in which skeletogenic tissue is initially cartilaginous and the differentiation of chondrocytes via the hypertrophic pathway precedes the differentiation of osteoblasts and the deposition of a definitive bone matrix. Results from both loss-of-function and misexpression studies have implicated the related h...
متن کاملExpression and function of Dlx genes in the osteoblast lineage.
Our laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5(-/-)/Dlx6(-/-) mice have more severe craniofacial and limb defects than Dlx5(-/-), some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the ...
متن کاملMultiple functions of Dlx genes.
Dlx genes comprise a highly conserved family of homeobox genes homologous to the distal-less (Dll) gene of Drosophila. They are thought to act as transcription factors. All Dlx genes are expressed in spatially and temporally restricted patterns in craniofacial primordia, basal telencephalon and diencephalon, and in distal regions of extending appendages, including the limb and the genital bud. ...
متن کاملA LINE-1 Insertion in DLX6 Is Responsible for Cleft Palate and Mandibular Abnormalities in a Canine Model of Pierre Robin Sequence
Cleft palate (CP) is one of the most commonly occurring craniofacial birth defects in humans. In order to study cleft palate in a naturally occurring model system, we utilized the Nova Scotia Duck Tolling Retriever (NSDTR) dog breed. Micro-computed tomography analysis of CP NSDTR craniofacial structures revealed that these dogs exhibit defects similar to those observed in a recognizable subgrou...
متن کاملA highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain.
Four Dlx homeobox genes, Dlx1, Dlx2, Dlx5, and Dlx6 are expressed in the same primordia of the mouse forebrain with temporally overlapping patterns. The four genes are organized as two tail-to-tail pairs, Dlx1/Dlx2 and Dlx5/Dlx6, a genomic arrangement conserved in distantly related vertebrates like zebrafish. The Dlx5/Dlx6 intergenic region contains two sequences of a few hundred base pairs, re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 16 9 شماره
صفحات -
تاریخ انتشار 2002